2021零基础大数据就业班年度会员版学习教程【超级详细】


2021零基础大数据就业班年度会员版学习教程

2021零基础大数据就业班年度会员版学习教程【超级详细】

目录如下:

阶段一 Java基础

阶段二 JavaWeb

阶段三 主流框架

阶段四 流行框架

阶段五 大数据基础增强

阶段六 大数据Hadoop离线分布式系统

阶段七 大数据 NoSQL、Kafka和ELK技术实战

阶段八 大数据Spark内存计算系统

阶段九 大数据Flink实时计算系统

阶段十 大数据新技术实战详解

阶段十一 大项目实战一 企业级360°全方位用户画像

阶段十二 大项目实战二 千亿级数据仓库

阶段十三 机器学习 (拓展课程)

阶段十四 云计算 (拓展课程)

阶段十五 大数据-就业指导技巧

大数据就业方向

延伸阅读

大数据就业方向

一、ETL研发

随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。

ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL.

二、Hadoop开发

Hadoop的核心是HDFS和MapReduce.HDFS提供了海量数据的存储,MapReduce提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。

三、可视化(前端展现)工具开发

海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。

可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。

过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。

四、信息架构开发

大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。

五、数据仓库研究

数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。

数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。

六、OLAP开发

随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。

OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。

七、数据科学研究

数据科学家的主要工作总的来说主要包含四个方面,分别是数据采集、数据库的构建以及维护、按要求清理以及分离数据、数据可视化以及一些分析工作。数据科学家需要的技能有SAS/R/类似工具,Python,Hadoop,SQL,重构数据。数据科学家可从事的领域有数据库构建和管理。搜索引擎、广告、自适应算法、AI系统。

八、数据预测(数据挖掘)分析

营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。

九、企业数据管理

企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证市场数据的完整性,准确性,唯一性,真实性和不冗余。

十、数据安全研究

数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。

月薪2w+的大数据就业岗位有哪些?

一、龙头大数据公司有哪些?

国内:阿里巴巴、华为、百度、腾讯、浪潮、探码科技、中兴通讯、神州融、中科曙光、华胜天成、用友等。

国际:IBM、惠普、Splunk、戴尔、Opower、Teradata、甲骨文、微软、亚马逊、谷歌、New Relic、Alation等。

二、大数据相关岗位及职责

(1)大数据开发工程师

开发,建设,测试和维护架构;负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等

(2)数据分析师

收集,处理和执行统计数据分析;运用工具,提取、分析、呈现数据,实现数据的商业意义,需要业务理解和工具应用能力

(3)数据挖掘工程师

数据建模、机器学习和算法实现;商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求

(4)数据架构师

需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署;高级算法设计与优化;数据相关系统设计与优化,需要平台级开发和架构设计能力

(5)数据库开发

设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等

(6)数据库管理

数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等

(7)数据科学家

数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换

(8)数据产品经理

把数据和业务结合起来做成数据产品;平台线提供基础平台和通用的数据工具,业务线提供更加贴近业务的分析框架和数据应用

三、大数据开发岗位介绍

想要成为一名合格的大数据开发工程师,首先就要了解大数据这样职业,大数据非传统型的互联网数据信息,大数据也包含了很多新的特征。

互联网时代的发展,每天都产生各种各样的数据信息,数据来源很广,每天都有从各方面来临的数据信息,大数据格式多种多样,非结构化数据、结构化数据、excel文件等等,而且大数据数量很大,至少要是TB级别的,甚至会达到PB级别的。

既然数据总量如此之多,又各种类型的都有,增长数据也很快,那数据该如何汇总并且转化运用成自己所需要的数据信息呢?这就诞生了大数据研发工程师,大数据研发工程师在充分了解行情的基础之上,发挥其自身所具备的专业技能。

新老鸟虚拟资源网
新老鸟虚拟资源网 » 2021零基础大数据就业班年度会员版学习教程【超级详细】

提供最优质的资源集合

立即查看 了解详情